

A Microresonator-Based Laser Doppler Velocity Sensor for Interplanetary Atmospheric Re-Entry

Benjamin Wise

18 April 2018

World Changers Shaped Here

Order of Presentation

- Introduction
- Measurement Principle
- Fiber-Coupled Resonator Experiments
- Proof-of-Concept Experiment with Rotating Disk
- Free-Space Coupled Resonator Experiments
- Signal Processing Approaches
- Conclusion

Motivation: Schiaparelli Crash

A €230 Million Mission Failure

World Changers Shaped Here

Schiaparelli enters atmosphere

Time: 0 sec Altitude: 121 km Speed: 21 000 km/b

Heatshield protection during atmospheric deceleration Time of maximum heating 1 mm 12 sec Altitude of the Spent 19 000 em/h

Parachute deploys

Time: 1 min 21 per Altibude: 11 km Speed: 1 min km/s

Front shield separates, radar turns on

Venez A rear 1 ares Antibude: 7 Arr

> Leonchute inttisoned with mar cover Time: 5 min 22 sec Albtode: 1.2 xm Speed: 240 km/h

Thruster ignition

Time: 5 min 23 sec. Altitude: 1.1 km Speed: 250 km/h

Thrusters off; freefail

Time: 5 min 52 sec Attitude: 2 min Speed: 6 km/h

Tene: 5 min 53 sec. Altitude: 0 m Speed: 10 km/h

-

Dents ILA/ATG messare

Computer, Tamit Barrer

-

Ces

Crash Site

- Thrusters Off State
 - Burn Time: 3s (of >30s)
 - Altitude: 3.7 km
 - Velocity: 250 km/h
- Impact
 Terminal Velocity
 - Estimated: 300-540 km/h

State-of-the-Art Velocity Sensing

Dead Reckoning Techniques

- Celestial Navigation
- Magnetic Navigation
- Inertial Navigation System (INS)
 - Often called: Inertial Measurement Units (IMU)
- Static-Pitot System
- Global Navigation Satellite System (GNSS)
 U.S. Based Global Positioning System (GPS)
 LIDAR and LDV/PIV

Desirable Sensor Characteristics

- Physically Small
- Lightweight
- High Resolution
- Non-invasive to the Flow
- High and Adjustable Depth of Field

Previous WGM Applications

- Chemical Impurity Detection in Liquids
- Opto-Mechanical Transducers/Sensor
 - Mechanical Sensing
 - Force
 - Temperature
 - Wall Shear Stress (for Aerodynamic Applications)
 - Electric-Field Strength Sensing
 - Magnetic-Field Strength Sensing
 - Seismography

Why Whispering Gallery Mode Sensors?

Desirable Sensor Characteristics

- Physically Small
- Lightweight
- High Resolution
- Non-invasive to the Flow
- High and Adjustable Depth of Field

Measurement Principle

World Changers Shaped Here

NISC

Doppler Shift Measurement

 \boldsymbol{x}

The Whispering Gallery

115e

• Resonance Condition: $2 \pi r n_0 = l \lambda$ for $r \gg \lambda$

WGM Spectra

TP

Quality Factor

Quality Factor Sets WGM-based Sensors Apart

- $Q \ge 10^7$ routinely achieved in the Micro Sensor Lab
- Q≥10¹¹ achieved under optimal conditions
- $Q \ge 10^{15}$ theorized for certain materials and wavelengths of light
- Measurement Resolution
 - For a wavelength of 639nm, $Q = 6 \times 10^6$ gives a 10 fm wavelength resolution
 - Corresponds to 2.4 m/s Speed Resolution
 - Full Backscatter Configuration

Desirable Sensor Characteristics

- Physically Small
- Lightweight
- High Resolution
- Non-invasive to the Flow
- High and Adjustable Depth of Field

Overall System Schematic

The Transmit/Receive Telescope

Desirable Sensor Characteristics

- Physically Small
- Lightweight
- High Resolution
- Non-invasive to the Flow
- High and Adjustable Depth of Field \checkmark

Tuning Methods

$$2 \pi r n_0 = l \lambda$$

Piezo-Tuning of Resonator

Laser-Tuning of Resonator

Piezo-Tuning of WGM Microresonators

Piezo-Tuning of WGM Microresonators

24 🧯

Laser-Tuning of WGM Microresonators 1150

, 🙆

Fiber-Coupled Resonator Experiment

World Changers Shaped Here

se

Piezo-Modulated Resonance Excitation

, 🌔

Piezo-Modulated Resonance Excitation

Piezo-Modulated Resonance Excitation

Piezo-Modulated Resonance Excitation Results

Proof-of-Concept Experiment with **Rotating Disk Target** VERITA **World Changers Shaped Here**

Laser-Modulated Resonance Excitation

Laser-Modulated Resonance Excitation

Laser-Modulated Resonance Excitation

34

Nise

Laser-Modulated Resonance Excitation Results

Laser-Modulated Resonance Excitation Results

Free-Space Coupled Resonator Experiment

World Changers Shaped Here

SE

Free-Space Coupled Resonator Experiment

Free-Space Coupled Resonator Experiment

Free-Space Coupled Resonator Experiment Results

Signal Processing Approaches

World Changers Shaped Here

Nise

Signal Processing Motivation

Variance Filtering

46

Conclusion

- Explored Various Tuning and Coupling Methodologies
- Demonstrated Doppler Shift Detection from a Solid Moving Target is Possible
- Demonstrated the Need for and Tested a New Signal Processing Approach to Mitigate Intermittent Signals
- Results Were Very Encouraging
 - At the Proof-of-Concept level, we were able to measure Doppler shift due to relative motion, with a miniaturized single-beam LIDAR device
 - We were able to overcome or mitigate some of the major challenges of this method

Acknowledgements

- Dr. Otugen
- My Thesis Committee Members:
 - Dr. Fourguette
 - Dr. loppolo
 - Dr. Willis
- My Colleagues: Elie Salameh and Jaime Da Silva
 Support from NASA through SBIR Phase I and II Contracts
 Dr. Farzin Amzajerdian, Program Manager
 My Family and Friends, for all their love and support
 You, the audience, for your patient attention

Resultant Papers and Presentations

NISC

 Wise, B. J., Eghbalifarkoosh, V., Otugen, V., and Fourguette, D. "A Microresonator Based Laser Velocity Sensor." 2018 AIAA Aerospace Sciences Meeting, AIAA SciTech Forum (Jan 2018)

 Benjamin J.A. Wise, Jaime DaSilva, and Elie R. Salameh, "An Improved Compact Atmospheric Speed Sensor for Mars Mission" 2018 Bluebonnet Symposium on Thermal-Fluid Sciences. (April 2018)

